Considerations for Contamination Cleanup in Plant Tissue Culture

David S. Hart, Gary R. Seckinger, and Kenneth C. Torres

June 2, 2014 World Forum on Biology

2014 World Forum on Biology

Outline

• Disinfecting the surface of explant tissue

- Indexing to avoid tissue multiplication with contamination
- Worst-Case Scenario
- Strategy
- Molecular Mode of Action and Caveats
 - Antimicrobials
 - Antifungals
 - Antivirals

Explant Surface Disinfection

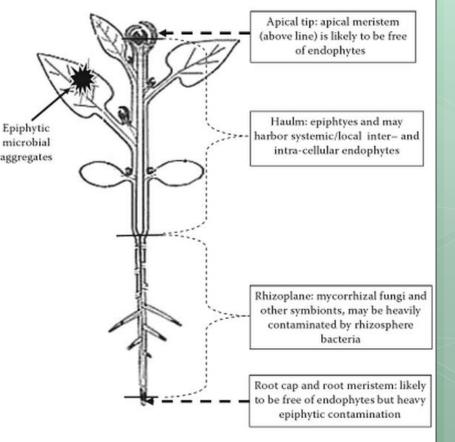
- Many of the disinfectants are amenable to freeradical formation/oxidation
 - Dissolution, adjusting pH will often lead to increased rates of decomposition
 - Prepare your solutions <u>fresh</u>!
- Surfactants/Alcohols are used to lower the surface tension of water (e.g. wet the hydrophobic surface of explant tissue)
 - Disinfectant solutions usually contain 2-10 drops of surfactant/L
 - Stay above critical micelle concentration (CMC)
 Tween 20 CMC = 0.006% (w/w)
 - With increased explant surface area (e.g. larger number of explants to be disinfected) higher concentrations of surfactant needed
 - Some commercial micropropagation labs will pre-wash with surfactant(or even soaps), alcohols prior to disinfection

Explant Surface Disinfectants

• Hypochlorous Acid (HOCI)

- Oxidizes Protein Thiols (-SH) & Halogenates any Protein Free amines — Enzyme dysfunction (Summers et al. 2012) & Unfolding (Winter et al. 2008)
- <u>10% Bleach</u> (0.5-0.83% NaOCI) = expose 5-30 min
 - Alkaline solution (pH 10)
 - H-OCI , pK_A = 7.5 @ pH 5.5, 99% is HOCI, 1% is ⁻OCI
- <u>NaDCC</u> (2-5 g/L) less phytotoxicity because of neutral pH at dissolution, and less need to rinse

• Forms HOCI in aqueous solution


• Chlorine dioxide (ClO_2)

- Chlorite (ClO₂-) most common species in aqueous solution above pH 3
- 0.001-0.01% used to disinfect apple (Kreske *et al.* 2006)
- 0.0025% used in place of autoclaving (Cardoso 2012)
 - <u>Hydrogen peroxide</u> (H₂O₂)
 - Stable at pH 3-4 (Solvay Interox 1998)
 - Mixed with acetic acid it forms peracetic acid – very high redox

Summers et al. (2012) Biochem. Biophys. Res. Comm. Vol. 425 pg. 159-161. potential Winter et al. (2008) Cell Vol. 135 pg. 691-701 Cardoso and Teixeira de Silva (2012) In Vitro Cell Dev. Bio. - Plant Vol. 48 pg 362-368 Kreske et al. (2006) J. Food Prot. Vol. 69(8) pg. 1892-1903

Indexing to Avoid Tissue Multiplication w/ Contamination

- Consider the tissue type
- Co-culture tissue & microorganism
 - Leifert & Waites Medium (Leifert and Waites, 1989) [L476]
 - 1/2 MS + Peptone + YE (Reed et al. 2004)
- Streak Tissue on plate to check for growth
 - Nutrient Agar/Broth [N601/N611]
 - Bacterial Medium 523 [B129]
 - Sabouraud Dextrose Medium [\$7536]
 - Potato Dextrose agar/brothfungi [P772/P762]
 - Czapek Dox Broth-fungi [C506/C443]

Cassells. (2011) in Plant Tissue Culture, Development and Biotechnology Ed: Trigiano & Gray. CRC Press pg. 223-238.

Indexing to Avoid Tissue Multiplication w/ Contamination

- Endophytes- bacteria and fungi in vascular tissues and in intercellular spaces and intracellular compartments
 - In Banana, bacteria was found between the cell wall & plasma membrane (Thomas and Chandra Sekhar, 2014)
- It is important to re-index (especially if you are changing the plant tissue culture medium-type!!!) as it is common for microorganisms to overcome:
 - Media pH (pH 4 is bacteriostatic to Pseudomonas & Bacillus (Leifert and Waites, 1992)
 - Media salt concentration
 - Phenolics excreted by the tissue (banana, sugar cane)
 - Plant Growth Regulators have affected yeast growth

Thomas and Chandra Sekhar (2014) AoB Plants. doi: 10.1093/aobpla/plu002 Leifert & Waites (1992) J. App. Microbiol. Vol. 72 pg. 460

Worst-Case Scenario

- 100 explants are contaminated
- You have been using bacteriostatic agents, and now are trying to get your tissue off of it
- Gram-staining your micro-organism showed both gram+ & gram-
- There isn't time/money to repeat the disinfection of new explant tissue for multiplication at the stage you are currently at....

What do you do?

Strategy

- Go to the Literature to see what has been used for your specific Plant species
- Bactericidal over Bacteriostatic
 - Eliminate do not just suppress the growth of bacteria
- Gram Stain
 - Address your contamination with the proper Gram(+) or Gram(-) antimicrobial
- 16S ribosomal DNA sequencing is becoming standard for microbe identification (5-7 days)
 - PCR amplify and sequence first 500-600 bp
 - Compare to gene library of ~2000 species
- Combine antibiotics so that they can kill micro-organism in different ways
 - Inhibit bacterial protein synthesis and cell wall synthesis
 - Some antibiotic combinations can be phytotoxic
- Test multiple concentrations to determine the proper dose
 - Dose-response curve

Bactericidal

- Aminoglycosides
- Cephalosporins
- Penicillins
- Glycopeptides
- Rifampicin

Bacteriostatic

• Chloramphenicols

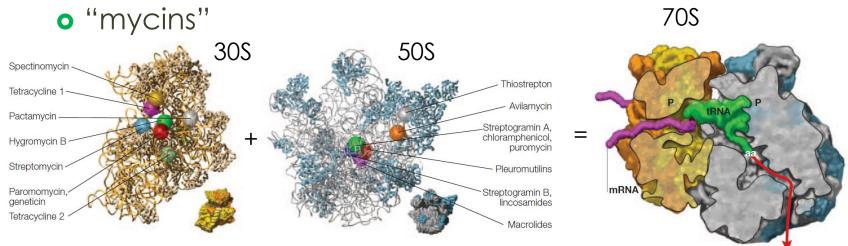
Gram (+)

- Tetracyclines
- Macrolides (Erythromycin)

Gram (-)

Aminoglycosides: some Gram (+) activity

Cefotaxime: 3rd Generation Cephalosporins some Gram (+) activity


Penicillins (e.g. Carbenicllin, Ticarcillin active ingredient in Timentin, Ampicillin, Amoxicillin)

Rifampicin: some Gram (+) activity

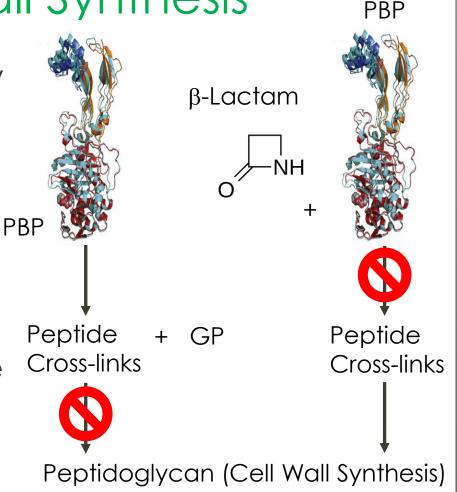
Glycopeptides (Vancomycin, Bacitracin Zinc, Polymyxin B)

Inhibiting Protein Synthesis (PS)

- Aminoglycosides
 - Amino-linked sugars
 - Bind to 30S or 50S subunits on the ribosome, blocking translation of mRNA to the growing peptide
- Indirectly Inhibits PS
 - Rifampicin blocks nucleotide synthesis by binding to an RNA polymerase subunit

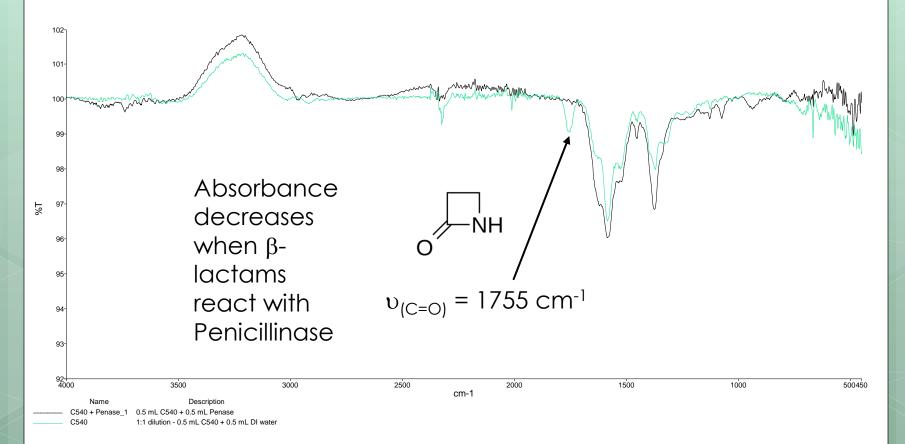
Poehlsgaard and Douthwaite. (2005) Nature Reviews Microbiology Vol. 3 pg. 870-881

Caveats to Inhibiting Protein Synthesis (PS)

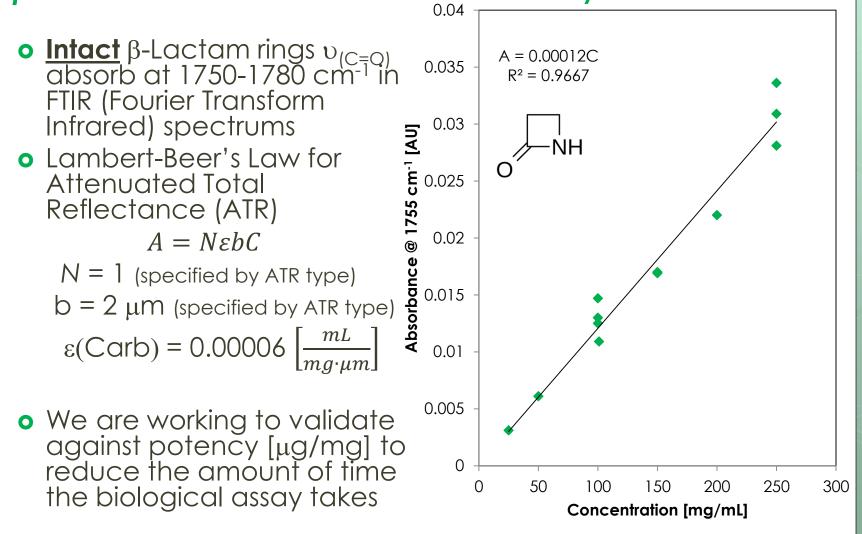

• Chloroplasts & Mitochondria contain 70S ribosomes!

- Aminoglycosides are known to inhibit cell proliferation and differentiation during transformation regeneration
- Leaf explant tissue is generally affected across all species, but different species can be differentially sensitive to various aminoglycosides (Padilla and Burgos, 2010)
- Chloroplast PS is required for normal plant development in tobacco (Ahlert *et al.* 2003).
- Rifampicin has been shown to completely inhibit RNA polymerase in chloroplasts from C. reinhardtii at 100 μg/mL (Surzycki 1969). Yet no inhibition was seen below 50 μg/mL.

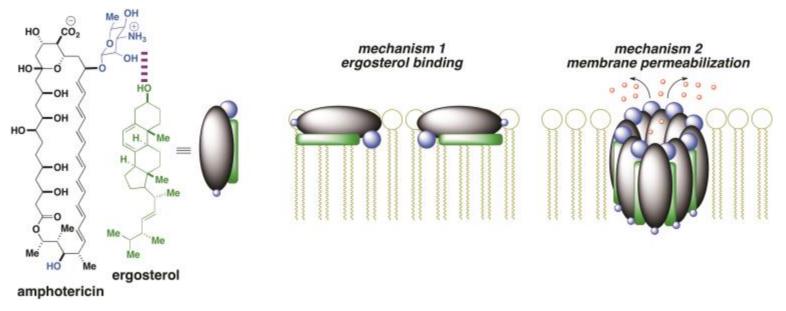
Padilla and Burgos (2010) Plant Cell Reports Vol. 29 pg. 1203-1213 Ahlert, Ruf, and Bock. (2003) PNAS Vol. 100 (26) pg 15730-15735 Surzycki. (1969) PNAS Vol. 63 (4) pg. 1327-1334


Inhibiting Bacterial Cell Wall Synthesis

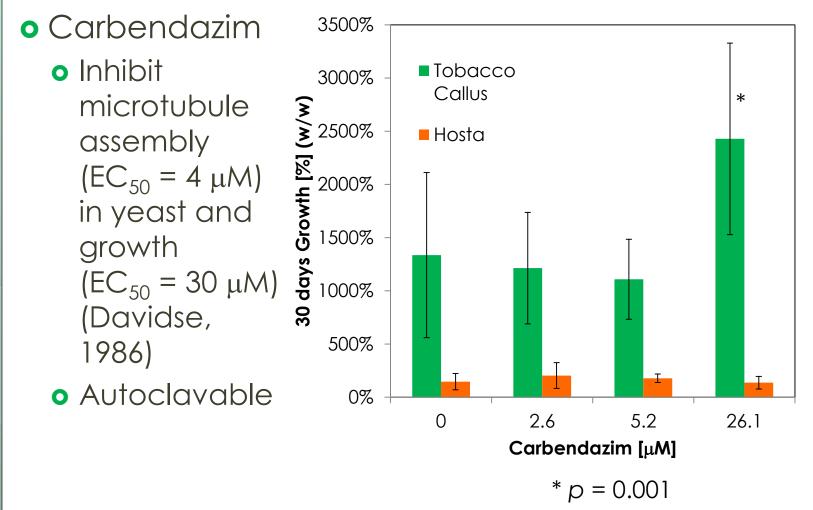
- β-Lactam rings are broken and covalently attached to a serine essential for peptide cross-linking on Penicillin-Binding Proteins (PBP).
- "cillins", cefotaxime
- Glycopeptides (GP)achieve the same end result but through blocking the peptides to be cross-linked


Sainsbury et al. (2011) Journal of Molecular Biology Vol. 405 pg. 173-184

β -lactam Solution Stability w/ FTIR


Incubated 50mg Carbenicillin with 500,000 IU Penase (BD Difco) for 3hr at 37°C

β -lactam Solution Stability w/ FTIR


Antifungals

- Amphotericin B & Nystatin binds sterols (specifically ergosterol) in plasma membranes, which is the primary mechanism of cell death in yeast (Gray *et al.* 2012).
 - Plant cells have an vast array of sterols
 - Fungi sterol content is mostly ergosterol
- Plants are susceptible to the same type of cell death

Gray et al. (2012) PNAS Vol. 109(7) pg. 2234-2239.

Antifungals (cont.)

Davidse (1986) Ann. Rev. Phytopathol. Vol. 24 pg. 43-65.

Antivirals

• Ribavirin (Virazole):

- Adenosine/Guanosine analogue
- Extremely broad antiviral activity, inhibiting RNA virus replication
- It's inhibition of DNA virus activity is not completely understood
- Eliminated Potato Viruses X, Y, S and M in Potato (Cassells and Long, 1982)
- Titers of Cucumber Mosaic (CMV) and Alfalfa Mosaic Viruses in plant tissue were reduced significantly when ribavirin 50-100 mg/L was added the culture medium (Simpkins *et al.* 1981)

Cassells and Long (1982) *Potato Research* Vol. 25(2) pg. 165-173. Simpkins *et al.* (1981) Ann. App. Biology Vol. 99(2) pg 161-169.

Summary

- Develop robust protocols for explant disinfection
- Index your explants post-disinfection
- If you need to use antibiotics/antifungals
 - Bacteriocidal to eliminate in a single dose
 - Consider the mechanism of action
 - Test various concentrations of the antibiotic/antifungal with your explant
- Be watchful of media changes in your culture...there are endophytes lurking

Acknowledgements

Phuong Nguyen
Charleen Chritton
Daryl Sappington

Questions?

email us: tech@phytotechlab.com