PhytoTechnology's Deficient Plant ## Tissue Culture Media Selection PhytoTechnology Laboratories offers numerous deficient media designed for nutritional research of plant cell cultures. These media are deficient in key elements, thus allowing the researcher the opportunity to vary the concentrations of a particular element. PhytoTechnology Laboratories offers the following deficient media in either dry powder form or as a liquid concentrate up to 100X: - Deficient Murashige and Skoog Based Media - Deficient Lloyd & McCown's Woody Plant Media - Nitrogen-free MS Based Media - Ammonia-free MS Based Media - Potassium Phosphate-free MS Based Media - Murashige and Skoog Macronutrient Liquid or Powdered Stock Bases - Murashige and Skoog Micronutrient Liquid or Powdered Stock Bases - Lloyd & McCown's WPM Micronutrient Stock Base All of our media are manufactured according to cGMP guidelines our environmentally manufacturing facility in Overland Park, Kansas. Each medium is first tested for specific physio-chemical specifications and then biologically tested with at least two commercially significant plant cell lines. *Phyto*Technology is Laboratories committed maintaining inventory of its entire selection of plant tissue culture media. Some features of our manufactured media include: - All media components meet USP or ACS quality standards where applicable. - Phyto Technology Laboratories has the capacity to manufacture batches of certain media up to 50,000 liters. - Using powder media simplifies medium production and reduces technician error when preparing individual batches of medium. - Phyto Technology Laboratories can custom package media orders into sizes that fit your needs. This allows the user to simply open the bottle or foil bag and pour out the entire contents, eliminating the steps the user would have to take to weigh out the individual components themselves. - Phyto Technology Laboratories offers a Lot Reservation Program for manufactured media which allows you to reserve a specific lot of a medium for your research purposes. We will set aside this batch of medium and when you order, you will receive media from the lot that was reserved. This is great for customers who do not have room to store bulk amounts of media, but would like the consistency of using the same lot of medium throughout their research. This reservation program is offered at no additional cost, however size restrictions may apply. - Custom liquid and powdered media manufacturing is available in batches ranging from 100 liters up to 25,000 liters. Formulations are kept confidential. Contact us for more details. - There is no minimum when ordering stock products from *Phyto*Technology Laboratories. PhytoTechnology Laboratories® ## The following table will help in the selection of a base media for use in your research applications. (Click on a product number to visit the product page on our website.) | Product
Number | Product Description | Liquid vs.
Powder | Media
Base | Ammonium
Nitrate | Potassium
Nitrate | Macro-
nutrients | Micro-
nutrients | Other | |-------------------|--|----------------------|---------------|---------------------|----------------------|---------------------|---------------------|--| | <u>L444</u> | Lloyd & McCown
Woody Plant
Micronutrient Mixture | Р | WPM | NA | NA | NA | 1 X | | | <u>M153</u> | Murashige & Skoog
Modified Medium(½X) | P | MS | ½ X | ½ X | ½ X | ½ X | Contains ½ X Macro-
& ½X Micronutrients | | <u>M290</u> | Murashige & Skoog
Modified Basal Salt
Mixture | P | MS | ½ X | ½ X | 1 X | 1 X | Contains ½ X Ammonium Nitrate, Potassium Nitrate & Calcium Chloride | | <u>M407</u> | Murashige & Skoog
Modified Basal Salt
Mixture | P | MS | 0 | 0 | 1 X | 1 X | Media contains no
nitrogen, potassium,
or phosphorous | | <u>M502</u> | Murashige & Skoog
Macronutrient Salts | P | MS | 1 X | 1 X | 1 X | NA | | | <u>M524</u> | Murashige & Skoog
Basal Salt Mixture | P | MS | 1 X | 1 X | 1 X | 1 X | | | <u>M529</u> | Murashige & Skoog
Micronutrient Stock
Solution (10X) | L | MS | NA | NA | NA | 10 X | USP sterility tested. | | <u>M531</u> | Murashige & Skoog
Modified Basal Salts—
No Nitrogen | P | MS | 0 | 0 | 1 X | 1 X | Contains no
Ammonium Nitrate
or Potassium Nitrate | | <u>M541</u> | Murashige & Skoog
Modified Basal
Medium
(No KH ₂ PO ₄) | P | MS | 1 X | 1 X | 1 X | 1 X | Contains no KH ₂ PO ₄ - Contains (mg/L): 300
Sodium Phosphate
Monobasic, 150
Adenine Hemisulfate,
And 1000 Casein
Hydrolysate.
Ferrous Sulfate and
Disodium EDTA are
replaced with Ferric
Sodium EDTA | | <u>M561</u> | Murashige & Skoog
Modified Basal Salts—
1/2 Nitrogen | Р | MS | 1/2 X | ¹∕2 X | 1 X | 1 X | Contains ½ X Ammonium Nitrate and Potassium Nitrate | | <u>M571</u> | Murashige & Skoog
Modified Basal Salts
(No NH ₄ NO ₃) | P | MS | 0 | 1 X | 1 X | 1 X | Contains no
Ammonium Nitrate | | <u>M654</u> | Murashige & Skoog
Macronutrient Stock
Solution (10X) | L | MS | 10 X | 10 X | 10 X | NA | Contains 10x
macronutrients- USP
sterility tested. | | <u>S806</u> | Schenk & Hildebrandt
Modified Basal Salt
Mixture | P | S&H | NA | 1X | 1X | 1X | No Calcium Chloride | | <u>\$808</u> | Schenk & Hildebrandt
Modified Basal
Medium | Р | S&H | NA | ½X | ½X | ½X | Contains 10 g/L
Sucrose, ½X Vitamins
½X Micro- & ½X
Macronutrients | NA= Not Applicable/Not included Revised 10/2011 CC Nutrient Components of *Phyto*Technology's Deficient Media (Click on a product number to visit the product page on our website.) | (Click on a product number to visit the product page on our website.) | | | | | | | | | | | | | | | |---|--|---|-----------------------------------|---|------------------------------------|-----------------------|--|---|---|--|---|--|---|---| | All
component
units are in
mg/L | Lloyd &McCown's WPM
Micronutrient Mixture | MS Modified Basal Salts (½X Macro & Micronutrients) | MS Modified Basal Salt
Mixture | MS Modified Basal Salt
Mixture (No N, P, or K) | MS Macronutrient Salt
Base (1X) | MS Basal Salt Mixture | MS Micronutrient Stock
Solution (10X) | MS Modified Basal Salt
Mixture (No Nitrogen) | MS Modified Basal Medium
(No KH ₂ PO ₄) | MS Modified Basal Salt
Mixture (1/2 X Nitrogen) | MS Modified Basal Salt Mixture (No NH_4NO_3) | MS Macronutrient Stock
Solution (10X) | Schenk & Hildebrandt
Modified Basal Salt Mixture
(No Calcium) | Schenk & Hildebrandt
Modified Basal Medium | | COMPONENT | <u>L444</u> | <u>M153</u> | <u>M290</u> | <u>M407</u> | <u>M502</u> | <u>M524</u> | <u>M529</u> | <u>M531</u> | <u>M541</u> | <u>M561</u> | <u>M571</u> | <u>M654</u> | <u>S806</u> | <u>S808</u> | | Ammonium
Nitrate | | 825.0 | 825.0 | | 1650 | 1650 | | | 1650 | 825.0 | | 16500 | | | | Ammonium
Phosphate,
Monobasic | | | | | | | | | | | | | 300.0 | 150.0 | | Boric Acid | 6.2 | 3.1 | 6.2 | 6.2 | | 6.2 | 62 | 6.2 | 6.2 | 6.2 | 6.2 | | 5.0 | 2.5 | | Calcium
Chloride
Anhydrous | 72.5 | 166.1 | 166.1 | 332.2 | 332.2 | 332.2 | | 332.2 | 332.2 | 332.2 | 332.2 | 3322 | | 75.5 | | Cobalt
Chloride•6H ₂ O | | 0.012
5 | 0.025 | 0.025 | | 0.025 | 0.25 | 0.025 | 0.025 | 0.025 | 0.025 | | 0.10 | 0.05 | | Cupric
Sulfate•5H ₂ O | 0.25 | 0.012
5 | 0.025 | 0.025 | | 0.025 | 0.25 | 0.025 | 0.025 | 0.025 | 0.025 | | 0.20 | 0.10 | | FeNaEDTA
Na ₂ -EDTA | 37.3 | 18.63 | 37.26 | 37.26 | | 37.26 | 373 | 37.26 | 36.7 | 37.26 | 37.26 | | 20.0 | 10.0 | | Ferrous | 27.85 | 13.9 | 27.8 | 27.8 | | 27.8 | 278 | 27.8 | | 27.8 | 27.8 | | 15.0 | 7.5 | | Sulfate•7H ₂ O Magnesium Sulfate | 180.7 | 90.35 | 180.7 | 180.7 | 180.7 | 180.7 | | 180.7 | 180.7 | 180.7 | 180.7 | 1807 | 195.4 | 97.7 | | Manganese
Sulfate•H ₂ O | 22.3 | 8.45 | 16.9 | 16.9 | | 16.9 | 169 | 16.9 | 16.9 | 16.9 | 16.9 | | 10.0 | 5.0 | | Molybdic Acid •2H ₂ O (SodiumSalt) | 0.25 | 0.125 | 0.25 | 0.25 | | 0.25 | 2.5 | 0.25 | 0.25 | 0.25 | 0.25 | | 0.10 | 0.05 | | Potassium
Iodide | | 0.415 | 0.83 | 0.83 | | 0.83 | 8.3 | 0.83 | 0.83 | 0.83 | 0.83 | | 1.0 | 0.50 | | Potassium
Nitrate | | 950.0 | 950.0 | | 1900 | 1900 | | | 1900.0 | 950.0 | 1900.0 | 19000 | 2500 | 1250.
0 | | Potassium
Phosphate
Monobasic | 170.0 | 85.0 | 170.0 | | 170.0 | 170.0 | | 170.0 | | 170.0 | 170.0 | 1700 | | | | Sodium
Phosphate
Monobasic | | | | | | | | | 300.0 | | | | | | | Zinc
Sulfate•7H ₂ O | 8.6 | 4.3 | 8.6 | 8.6 | | 8.6 | 86 | 8.6 | 8.6 | 8.6 | 8.6 | | 1.0 | 0.5 | | Adenine
Hemisulfate | | | | | | | | | 150.0 | | | | | | | Casein, Enzymatic
Hydrolysate | | | | | | | | | 1000 | | | | | | | Glycine myo-Inositol | | | | | | | | | 2.0 | | | | | 500 | | Nicotinic Acid | | | | | | | | | 5.0 | | | | | 2.5 | | Pyridoxine•HCl | | | | | | | | | 1.0 | | | | | 0.25 | | Thamine•HCl | | | | | | | | | 0.5 | | | | | 2.5 | | Sucrose Grams of powder to make 1L of | 0.53 | 2.17 | 2.39 | 0.61 | 4.23 | 4.33 | N/A | 0.78 | 5.69 | 2.56 | 2.68 | N/A | 3.05 | 12.10 | | medium | | | | | | | <u> </u> | | | | | | | |